The Preface Paradox (and a Probability Primer)

Ryan Doody

Norms of Rational Belief

What norms govern rational belief? Here are two plausible candidates.

Belief Consistency: Rationality requires the set of things you believe the be logically consistent.

$$
\Rightarrow \neg B(p \wedge \neg p)
$$

Belief Closure: If some of your beliefs entail a further proposition, rationality requires you to believe that further proposition as well.

$$
\Rightarrow \text { If } B(p) \wedge B(q) \text {, then } B(p \wedge q)
$$

Are these plausible rules? What can be said to justify them?

The Preface Paradox

Consider the following example from Makinson (1965):
You write a long, painstakingly-researched work of nonfiction, which contains many claims in its main text, each of which you believe. In the preface at the beginning of the book you write:
"I am indebted to many for their invaluable help and encouragement. I am sure there remain errors in the main text, for which I take sole responsibility."
Everybody makes mistakes. And you, being a reasonable fellow, recognize that you are no exception.

Let me highlight two features of this story.
Rational Humility: It's rational to believe that at least one of the claims in your book is false.

$$
\Rightarrow B\left(\neg\left(p_{1} \wedge p_{2} \wedge \cdots \wedge p_{n}\right)\right)
$$

Honesty: Every claim you make in the main text of your book you believe to be true.

$$
\Rightarrow B\left(p_{1}\right) \wedge B\left(p_{2}\right) \wedge \cdots \wedge B\left(p_{n}\right)
$$

Consistency, Closure, Humility, and Honesty can't all be true! Which should we give up?

Idea: Binary beliefs \rightarrow degrees of belief ('credences')

In order for your beliefs to responsibly represent the world, they should be consistent. Otherwise, it's not logically possible for them all to be true!

In order for your beliefs to responsibly represent the world, they should be closed under logical entailment. If X logically entails Y, then Y must be true if X is. And so, if you believe X is true, you should believe Y is true, too.

Let $p_{1}, p_{2}, \ldots, p_{n}$ stand for all of the claims you make in the book.

Note: $\left(\neg p_{1} \vee \neg p_{2} \vee \cdots \vee \neg p_{n}\right)$ is logically equivalent to $\neg\left(p_{1} \wedge p_{2} \wedge \cdots \wedge\right.$ p_{n})

The Preface Paradox		
(1)	$B\left(p_{1} \wedge p_{2} \wedge \cdots \wedge p_{n}\right)$	[Honesty, Closure]
(2)	Let $p=\left(p_{1} \wedge p_{2} \wedge \cdots \wedge p_{n}\right)$	
(3)	$B(p)$	[(1), (2)]
(4)	$B(\neg p)$	[Humility, (2)]
(5)	$B(p \wedge \neg p)$	(4), Closure]
(6)	$\neg B(p \wedge \neg p)$	[Consistency]
(7)	\perp	$[(5),(6)]$

Degrees of Belief and Probabilism

What norms govern rational degrees of belief? Here's a plausible idea:
Probabilism: Rationality requires your degrees of belief to obey the probability axioms.

Before investigating whether this is true, let's unpack what this says.

The Probability Axioms

Non-Negativity. Every $X \in \mathscr{L}$ is assigned a non-negative number.

$$
\begin{equation*}
C(X) \geq 0 \tag{1}
\end{equation*}
$$

Normality. Every tautology $T \in \mathscr{L}$ is assigned 1 .

$$
\begin{equation*}
C(T)=1 \tag{2}
\end{equation*}
$$

Finite Additivity. For any mutually exclusive $X, Y \in \mathscr{L}$, the number assigned to their disjunction equals the sum of the numbers assigned to them.

$$
\begin{equation*}
\text { If }(X \wedge Y) \vdash \perp \text {, then } c(X \vee Y)=c(X)+c(Y) \tag{3}
\end{equation*}
$$

Here are three interesting and useful facts.
The Negation Rule: For any $X \in \mathscr{L}, c(\neg X)=1-c(X)$.
The Overlap Rule: In general, the probability of a disjunction equals the sum of the probabilities of its disjuncts minus the probability of its disjuncts' overlap.

$$
c(X \vee Y)=c(X)+c(Y)-c(X \wedge Y)
$$

The Logical Consequence Rule: If $X \vdash Y$, then $c(X) \leq c(Y)$.

Conditional Probability

In addition to the three axioms above, we introduce the notion of conditional probability.

$$
\begin{equation*}
c(X \mid Y)=\frac{c(X \wedge Y)}{c(Y)} \tag{4}
\end{equation*}
$$

This tells us the probability of X being the case conditional on Y being the case. Here's another useful definition:

Independence: X and Y are statistically independent just in case $c(X \mid Y)=c(X)$.

The Conjunction Fallacy. In a famous study, Tversky and Kahneman (1983) presented subjects with the following story:

> Linda is 31 years old, single, outspoken, and very bright. She majored in philosophy. As a student, she was deeply concerned with issues of discrimination and social justice, and also participated in anti-nuclear demonstrations.

The subjects were then asked to rank the probabilities of the following propositions:

- Linda is active in the feminist movement.
- Linda is a bank teller.
- Linda is a bank teller and is active in the feminist movement.
A large majority of the subjects ranked the third option as more probable than the second!

